

1

ASTA documentation – IT-enheden, Rigsarkivet

Indhold
ASTA documentation – IT-enheden, Rigsarkivet ... 1

1. Name and version .. 2

2. Overall solution description – business logic .. 2

2.1. Create SIP - Hybris ... 3

2.2. Edit SIP - Hybris .. 7

2.3. Validate SIP - Nemesis ... 8

2.4. Create AIP - Athena ... 9

2.5. Create DIP – Styx ... 13

2.6. Diagrams of business logic .. 16

3. Architecture description and diagrams ... 19

3.1. Hybris ... 20

3.2. Nemesis ... 20

3.3. Athena ... 28

3.4. Styx .. 28

4. Location of code, scripts and possibly binary files .. 29

5. Operation Setup .. 29

5.1. Creation of packages and releases .. 29

5.2. General setup .. 31

6. Development Setup ... 33

7. Class diagram ... 35

8. Browser and operating system version supported ... 38

9. Languages .. 39

10. Profile .. 41

2

1. Name and version

ASTA Version 2.0.0

ASTA stands for ”Aflevering af Statistikfiler Til Arkiv” (Delivering of statistical files to the archive).

2. Overall solution description – business logic

What is ASTA?

ASTA is a tool for long term preservation of statistical data originated from statistical file formats. The

program holds functionality for both creating a SIP (delivery format), validating the SIP, converting the SIP

to an AIP (preservation format) and converting the AIP back to a DIP (access format). The terms SIP, AIP and

DIP comes from the OAIS model (see figure 1) and stands for:

SIP = Submission Information Package

AIP = Archival Information Package

DIP = Dissemination Information Package

Figure 1. Open Archival Information System model (OAIS)

ASTA comes in two release formats:

 AstaInstaller.exe (Windows) or AstaInstaller.dmg (Mac) is used by the data creator/submitter and

holds only functionality to create, edit and validate a SIP.

 AstaIntallerExtended.exe (Windows only) is used by the archive and has both functionality to

create, edit and validate a SIP and also to create an AIP and a DIP.

Why is ASTA developed?

The purpose of ASTA is to relieve the data creator and minimize workload when producing a SIP with data

from a statistical file format to the archive. As the wait for having your package accepted by the archive can

be as much as three months, the validating tool in ASTA make the users almost 100 % sure they have

delivered all required material and correct data in the first try. The program also provides the archive an

automated conversion of the submitted SIP to an AIP and to create a DIP.

3

Functionality in ASTA

ASTA has the following functionality and thus support the user to:

 Create SIP = Hybris (Skab afleveringspakke)

 Edit SIP = Hybris (Rediger afleveringspakke)

 Validate SIP = Nemesis (Test afleveringspakke)

 Create AIP = Athena (Konverter til AV)

 Create DIP = Styx (Skab udleveringsformat)

The names HYBRIS, NEMESIS, ATHENA and STYX are listed above, because the code and this documentation

still holds these names for the functionality.

Front page of ASTA

2.1. Create SIP - Hybris

The function Create SIP (Skab afleveringspakke) in ASTA is a tool for converting statistical data files like

SAS, Stata and SPSS files and documentation into a SIP (delivery format) that can be delivered to a Danish

archive. The structure and content of a SIP is illustrated in figure 2, 3 and 4.

This happens when a user use the function Create SIP:

1. User add id for the SIP

2. User browse destination for the SIP

3. ASTA creates the folders ContextDocumentation, Data and Indices of the SIP (see figure 2)

4. User browse a statistical file (.sav, .sas7bdat or .dta)

4

5. ASTA creates the folder table1 in folder Data (see figure 2)

6. ASTA places an export script according to the chosen statistical file (.sps, .sas or .do) in the same

location as the chosen statistical file

7. User runs the export script in a statistical program installed on the PC

8. Export script creates 2-4 .txt files with metadata and 1 .csv file (table1.csv) with data from the

statistical file and place the output files in the folder table1 (see figure 2)

9. User add metadata information about the statistical file

10. ASTA add all metadata from step 6 and 7 into one single metadatafile (table1.txt)

11. User converts data from more statistical files (step 3-7 again – table2, table3) (not mandatory)

12. User add references across data (not mandatory)

13. User copy control files (not mandatory) and ASTA saves the control files in folder

ASTA_kontrolfiler_FD.XXXXX next to the SIP

14. User browse the index files (archiveIndex.xml and contextDocumentationIndex.xml)

15. ASTA places the index files in folder Indices (see figure 2)

16. User browse the context documentation files

17. ASTA places the context documentation in correctly named folders under folder

ContextDocumentation according to the folder order in the contextDocumentationIndex.xml file

(see figure 2)

18. User print list of added context documents (not mandatory)

19. ASTA saves the list of added context documents in folder ASTA_kontrolfiler_FD.XXXXX next to the

SIP

ASTA GUI for step 3

5

Figure 2. Structure and content of a SIP (afleveringspakke)

Figure 3. Example of a data file (table1.csv) in the SIP

The folder ContextDocumentation contains documents in

TIFF-format. The context documentation describes the data

and content of the SIP. Description of data collection

methods, research methods, questionnaire, publications and

so on.

The folder Data contains a data file (table1.csv) and a

metadata file (table1.txt) compliant with the rules in schedule

9 in the Executive order on Information Packages. Data and

metadata in these files has been extracted from the statistical

file format. He metadata is on variable level, e.g. variable

labels, variable datatypes, value labels, codes for missing

values.

The folder Indices contains two indexfiles with metadata

about the SIP on a more general level. The file

archiveIndex.xml holds information about the data creator,

dates of data collection, access restrictions and so on. The file

contextDocumentationIndex.xml holds metadata on the

context documentation, like title and the document,

descriptions, author and subject categorization.

6

Figure 4. Example of a metadata file (table1.txt) in the SIP

7

2.2. Edit SIP - Hybris

ASTA has no “Undo” or “Back” functionality so the creation of a SIP must be made in one linear take.

However, index files and context documentation can be replaced or added to the SIP later using the

function Edit SIP (Rediger afleveringspakke).

This happens when a user use the function Edit SIP:

1. User browse SIP (eg. FD.12345)

2. User replace index files (archiveIndex.xml and contextDocumentationIndex.xml) (not mandatory)

3. User replace or add context documentation files

ASTA GUI for step 3

8

2.3. Validate SIP - Nemesis

When a SIP has been created ASTA can be used to validate whether the structure and content of the SIP is

compliant with the rules specified in the Executive Order on Information Packages (See Appendix 1). This

Executive Order holds all the technical business logic implemented in ASTA. The function for validating the

SIP is called Validate SIP (Test afleveringspakke).

This happens when a user use the function Validate SIP:

1. User browse SIP (eg. FD.12345)

2. User click the button ”Start test” to start validation

3. ASTA generates af testlog and save a html version in a folder

4. User click the errorID in the testlog and read instructions on how to correct the error

ASTA GUI for step 3

ASTA GUI for step 4

9

2.4. Create AIP - Athena

When the SIP has been delivered to the archive ASTA can be used to convert the SIP to an AIP used for long

term preservation. The AIP must be compliant with the rules in the Executive Order on Information

Packages schedule 1-8 and will be stored in the preservation storage of the archive. The function for

converting the SIP to an AIP is a button called Create AIP (Konverter til AV). This button will only be visible

under the function “Test afleveringspakke” when the SIP is compliant with the rules in Executive Order on

Information Packages and ready for conversion to an AIP. The structure and content of an AIP is illustrated

in figure 5, 6 and 7. The Danish National Archives has developed the tool ADA to validate the AIP.

This happens when a user use the function Create AIP:

1. User test SIP under ”Test afleveringspakke” (Validate SIP) and click the button ”Konverter til AV”

2. ASTA .Net application (Athena) pops up

3. ASTA browse the .json file made by Validate SIP under validation of the SIP

4. ASTA add the AIP ID according to the chosen AIP (eg. AVID.SA.12345.1)

5. User choose the output destination for the converted AIP

6. User click the button ”Konverter til AV”

7. ASTA convert the SIP to AIP format (except the fileIndex.xml file) (see figure 5)

8. ASTA generates a conversion log file and place it in the folder

ASTA_konverteringslog_AVID.SA.XXXXX.1 in the same folder as the AIP

9. User click the button “Næste”

10. ASTA gives an overview of data before (SIP) and after (AIP) conversion where user control that the

conversion is lossless.

11. User click the button “Afslut konvertering”

12. ASTA generates the fileIndex.xml file and place it in the Indices folder (see figure 5)

13. ASTA add information to the conversion log file and generate a conversion report and place both

files in the folder ASTA_konverteringslog_AVID.SA.XXXXX.1 in the same folder as the AIP

ASTA GUI for step 10

10

Figure 5. Structure and content of an AIP (arkiveringsversion)

11

Figure 6. Example of a data file (table1.xml) in an AIP

12

Figure 7. Example of a metadata file (tableIndex.xml) in an AIP

13

2.5. Create DIP – Styx

Finally ASTA also holds the function Create DIP (Skab udleveringsformat) to convert an AIP to a DIP. A DIP is

the access format a user of the archive uses. The DIP is a folder structure with the data and metadata in a

format that through the use of a SPSS import script (.sps) can be converted to in a SPSS file format (.sav).

The DIP also contains the SPSS import script and the context documentation from the AIP in TIFF-format.

The structure and content of a DIP is illustrated in figure 8.

The Danish National Archives have no tool to validate the DIP. The validation of the data in the DIP

conversion can be made by comparing the converted SPSS-file in the DIP (Styx output) with the original

SPSS statistical file used for the SIP (Hybris input) using a compare syntax in the program SPSS Statistics.

Other validation methods must be used for SAS and Stata files.

This happens when a user use the function Create DIP:

1. User click on “Skab udleveringsformat” in the left menu

2. ASTA .Net application (Styx) pops up

3. User browse an AIP (eg. AVID.SA.12345.1)

4. ASTA add the DIP ID according to the chosen AIP (eg. DIP.12345)

5. User choose the output destination for the converted DIP

6. User click the button “Konverter til DIP”

7. ASTA creates the DIP (se figure 8)

8. User runs the SPSS import script (.sps) in his SPSS program installed on his PC

9. SPSS import script generates the SPSS file and save the file in the same folder as the script

ASTA GUI for step 7

14

Figure 8. Structure and content of a DIP

The 1007 solution

Styx was originally developed to convert an AIP submitted according to schedule 9 and made by ASTA to a

DIP.

However The Danish National Archives also had a strong requirement to convert data and metadata from

an AIP not created by ASTA to a SPSS file format. These AIP’s are compliant with the rules in the previous

Executive Order on Information Packages no. 1007, schedule 1-8. The 1007-format do not contain a

reserachIndex.xml file with information about main tables. Also more datatypes are allowed in in the 1007-

format than in a SIP according to schedule 9 in the new Executive order.

This 1007 solution functionality is also implemented in Styx and works this way:

1. User click on “Skab udleveringsformat” in the left menu

2. ASTA .Net application (Styx) pops up

3. User browse an AIP (eg. AVID.SA.12345.1)

4. ASTA add the DIP ID according to the chosen AIP (eg. DIP.12345)

5. User choose the output destination for the converted DIP

15

6. User click the button “Konverter til DIP”

7. ASTA reports No research Index file found (se first figure below)

8. User click the button “1007 udtræk”

9. User selects main tables and code tables for conversion. User mark column with the code and

delete all other columns in code lists than the code explanation. user click the button “Konverter til

DIP” (se second figure below)

10. ASTA creates the DIP (se figure 8)

11. User runs the SPSS import script (.sps) in his SPSS program installed on his PC

12. SPSS import script generates the SPSS file and save the file in the same folder as the script

ASTA GUI for step 7

ASTA GUI for step 9

16

2.6. Diagrams of business logic

17

18

19

3. Architecture description and diagrams

The full solution consists of two different pieces of software (program 1 and 2 for ease of identification).

These two consists of the following four subprograms;

 Hybris: The creation of the SIP/delivery package (program 1)

 Nemesis: Test of the SIP/delivery package. (program 1)

 Athena: The creation of the AIP/preservation format. (program 2)

 Styx: The creation of a DIP/statistical file format (SPSS) from the data in the AIP/preservation

format. (program 2)

There will be two different program releases. One for the external users and one for the archive, the latter

containing extra features and program parts (only this version will have access to Athena and Styx). The one

for the archive will also contain extra options in the program running Nemesis and Hybris. So, the overall

setup of the two releases will be as follows;

 User version: Program 1, which has the basic functionality the user needs to create and test a

SIP.

 Archive version: Program 1 + 2, which has extra functionality in program 1.

Program 1 is a cross platform solution made with Electron (https://electronjs.org/).

Program 2 is made with .NET technologies (WinForms). The applications have no responsibilities in regard

to the external storage and storing of the transformed data.

https://electronjs.org/

20

3.1. Hybris

Export scripts

When a SIP is created Hybris deliveres export scripts that enable the user to extract data and metadata

from the statistical file format to the format of the data and metadata files in the SIP specified in schedule 9

in the Executive Order on Information Packages. These scripts are placed as ressources in the code.

ASTA 2.0.0 holds the following 4 scripts:

 sas_with_catalog_script.sas

 sas_without_catalog_script.sas

 spss_script.sps

 stata_script.do

The export scripts are tested to work well in the following programs:

 SAS v. 9.4

 SPSS v. 24

 Stata v. 14.2

Performance

NOTE: The SPSS export script (spss_script.sps) has low performance on Mac due to the “Golden solution”

(Guldløsningen) in the script, that make sure all value labels are extracted correctly to the metadata file

according to the values used in the data file.

Quality of the Hybris solution

The quality of the Hybris solution is good. It has been tested thoroughly both with external and internal

users and much of the desired functionality is implemented.

Bugs and new functionality reported to Hybris can be found in YouTrack > Hybris_1007plus Project

Management > Unscheduled (https://bit.myjetbrains.com/youtrack/agiles/64-96/65-463).

3.2. Nemesis

Flowcharts and Error stop

Nemesis validates a SIP according to the rules in schedule 9 in the Executive Order on Information

Packages. Nemesis should test as much as possible before terminating the test to prevent the user to redo

the SIP from the start and run Nemesis (validate SIP) more times than absolutely necessary.

The flow of the tests in Nemesis is illustrated in the flowcharts in figure 10-14 below. Appendix 2-5 group

test suites for Nemesis according to the flowcharts.

An error-stop in the Nemesis code, means that the test will be terminated if this error is found. When an

error stop is met the test can not continue to the tests in next flowchart, eg. from 2.1 to 3.0. and the button

“Konverter til AV” that allows the creation of the AIP in the Athena application will not be shown in

Nemesis.

NOTE: Some error stops are inserted in Nemesis to prevent conversion errors in Athena.

https://bit.myjetbrains.com/youtrack/agiles/64-96/65-463

21

A test also terminates when 40 errors has been found.

A test of a specific rule also terminates when 100 of the same kind of hint has been found.

When a test terminates Nemesis display one of the following status messages on the GUI:

 Afleveringspakken er gennemtestet uden fejl og kan nu afleveres til arkivet

This means that everything in the SIP has been tested an no errors was found.

 Afleveringspakken er fuldt gennemtestet. Fejl vist i loggen skal rettes før aflevering til arkiv

This means that everything in the SIP has been tested, but errors occurs and these should be

corrected before submitting the SIP to the archive.

 Testen er afbrudt, og afleveringspakken er ikke testet færdig. Fejl vist i loggen skal rettes før

testen kan fortsætte

This means that the test has terminated, and not everything in the SIP has been tested. The errors

shown must be corrected before the test can continue. Thus more errors can occur in the next test.

Performance

The performance of Nemesis has been tested on different sizes of SIPs and hardware and has been

accepted. Se the result of the performance test in figure 9.

The performance tests has been executed using the Athena console converter with performance output

(under Athena folder). In order to run console start ASTA (nemesis) that’s generate json output then run

console as followings example:

.\AthenaConsole.exe "C:\VSO\Rigsarkivet\test\FD.15002.json" "C:\VSO\Rigsarkivet\test"

"AVID.SA.15002.1"

Quality of the Nemesis solution

The quality of the Nemesis solution is good. It has been tested thoroughly using a test suite of 247 SIP’s

with known errors. 150 original statistical datasets (SIPs) has been tested during development. All of the

known desired functionality is implemented.

Bugs and new functionality reported to Nemesis can be found in YouTrack > Nemesis_1007plus Project

Management > Unscheduled (https://bit.myjetbrains.com/youtrack/agiles/64-98/65-465)

https://bit.myjetbrains.com/youtrack/agiles/64-98/65-465

22

Figure 9. Results from performance test of Nemesis and Athena

23

Figure 10. Nemesis flowchart 0.0: Overview

24

Figure 11. Nemesis flowchart 1.0: Validating folder structure of SIP (see Appendix 2 for test suites)

25

Figure 12. Nemesis flowchart 2.0: Validation of metadata (see Appendix 3 for test suites)

26

Figure 13. Nemesis flowchart 2.1: EBNF validation of the metadata file (see Appendix 4 for test suites)

27

Figure 14. Nemesis flowchart 3.0: EBNF validation of the data file (see Appendix 5 for test suites)

28

3.3. Athena

Athena convert a SIP (delivery format) to the AIP format (preservation format). In the Danish National

Archives the AIP format is called an arkiveringsversion and is compliant with the rules in schedule 1-8 in the

Executive Order on Information Packages.

Nemesis creates a .json file with information collected during the validation of the SIP that is used by

Athena during conversion of the SIP to an AIP.

Performance

The performance of Athena has been tested on different sizes of SIPs and hardware and has been accepted.

Se the result of the performance test in figure 9. Read more about the test in section 3.2.

Quality of the Athena solution

The quality of the Athena solution is good. An AIP created by Athena is accepted with no errors in the

validation tool ADA.

However due to the architecture of the code an use of the .json file from a Nemesis validation Athena lacks

the ability to report on how many tables and rows in tables the SIP contained before conversion to an AIP.

Improvements can be thus be made to the conversion report that Athena creates.

Bugs and new functionality reported to Athena can be found in YouTrack > Athena_1007plus Project

Management > Unscheduled (https://bit.myjetbrains.com/youtrack/agiles/64-100/65-467).

3.4. Styx

SPSS import script

Styx convert an AIP (preservation format) to the DIP format (access format). In the Danish National Archives

the DIP format is statistical file formats. ASTA 2.0.0 only support conversion to the SPSS file format.

Styx deliveres an SPSS import script (.sps) for creating the SPSS file (.sav) from the DIP-format (data in a .csv

file and metadata in several .txt files).

Styx also convert data formats from the data xml-files in the AIP and data types from the metadata file

tableIndex.xml to valid SPSS data formats and datatypes that are accepted when imported by the SPSS

import script.

Drafts for import scripts to SAS and Stata files have been made, but due to challenges in importing codes

for missing values no final versions are ready for use yet.

Quality of the Styx solution

The quality of the Styx solution is poor. It is usable but had low priority during development.

The testing done on Styx shows that often the SPSS import script do not read all data from the data file in

the DIP into the SPSS format. Consequently, when using Styx is it necessary to make a visual control and

compare data and metadata in the AIP with the content of the SPSS file to make sure the DIP conversion is

lossless. The validation of the data in the DIP conversion can also be made automatically by comparing the

converted SPSS-file in the DIP with the original statistical file used for the SIP using a compare syntax in the

program SPSS Statistics.

https://bit.myjetbrains.com/youtrack/agiles/64-100/65-467

29

Bugs and new functionality reported to Styx can be found in YouTrack > Styx_1007plus Project

Management > Unscheduled (https://bit.myjetbrains.com/youtrack/agiles/64-102/65-469).

4. Location of code, scripts and possibly binary files

The solution is hosted in GitHub (https://github.com/the-danish-national-archives/ASTA). From here the

solution can be cloned to a local machine.

The test suite for Nemesis and other test material is also placed in GitHub.

Backlog for ASTA with reported bugs and further requirements are placed in YouTrack under Unscheduled

in the following Agile Boards (https://bit.myjetbrains.com/youtrack):

 Hybris_1007plus Project Management

 Nemesis_1007plus Project Management

 Athena_1007plus Project Management

 Styx_1007plus Project Management

5. Operation Setup

5.1. Creation of packages and releases

Code is placed on GitHub

The solution is hosted in GitHub as described above and can be accessed via Git commands. There are no

requirements for tools to do this, only a terminal with Git installed. GitHub does have a desktop application

that can be used instead of a terminal.

In the package.json file, all script commands used by the program are detailed, like ‘npm start’, which is

used to start the program 1 locally.

To run one of the other custom scripts, use ‘npm run <script>’ – e.g. npm run package-win. That command

will make a user version of the solution. In the package.json file it is detailed how to make different

versions of the program, this is listed in the ‘scripts’ part, see below:

Creating packages

When creating a release package, you need to use the ‘electron-packager’ component. This will make a

https://bit.myjetbrains.com/youtrack/agiles/64-102/65-469
https://github.com/the-danish-national-archives/ASTA
https://bit.myjetbrains.com/youtrack

30

package of the solution, which then can be made into an .exe / .dmg file. There is made several scripts to

handle this, these all start with “package- “.

“electron-packager” is an npm package that can be found at: https://www.npmjs.com/package/electron-

packager. Here you can find relevant information about the use of the module. Please note that the ‘—

extra-resources’ flag have not been described here. This flag allows for the inclusion of extra files in the

build (such as the scripts, languages and PDF files). The other used flags are handling out folders, icon for

the application and so on.

There is two different packaging script for the various operating systems. Those that are called “-extended”

is for the archive only. In this package the administrative tools are included in the interface (they are

hidden, but inaccessible in the user version).

Versioning the releases

Firstly the ‘version’ field in package.json needs to be updated. This field will be reflected in the interface

and program list (on Windows). The release number consists of three digits e.g. 1.0.4, these digits are

defined as;

1 – Major change (e.g. new language pack)

0 – Minor change (new functionality in existing features in ASTA, addition of R scripts)

4 – Bug fixes

After this a package can be made using the package- scripts.

Creating an executable file

Once the package has been made, an executable file then needs to be made. This is done by running the

scripts starting with “create-“. Here are also scripts for making admin and user versions of the files.

NOTE: the .dmg files must be made on a Mac machine. These cannot be created on Windows. The script

will throw an error and inform about this if attempted.

On the GitHub page, you can find more information about how to use GitHub.

NOTE: When creating the .exe file, be aware that an error can occur if you have an old file in the same

output folder as you’re packaging to. Make sure to delete old executable files before creating new ones.

The error is that the packaging module will include the old .exe file in the build and the program will then

start twice when you run it.

Creating release on GitHub

After the executable files have been created, a release needs to be created on GitHub. Releasing on GitHub

follows the GitHub guide on releases, which can be found at https://help.github.com/en/articles/creating-

releases

This does in short include;

 Draft a new release

 Create version number and tag for the release

https://www.npmjs.com/package/electron-packager
https://www.npmjs.com/package/electron-packager
https://help.github.com/en/articles/creating-releases
https://help.github.com/en/articles/creating-releases

31

 Include the binary files for the release (non-code related files)

 Create the (pre-)release.

5.2. General setup

Installation of ASTA

When the executable files of ASTA (.exe and .dmg) is run ASTA is installed at the users PC. This might

require administrative rights.

On Windows ASTA is placed here: C:\Users\%USERPROFILE%\AppData\Local\asta\app-2.0.0

To create a SIP using Hybris in ASTA the user also need to have a statistical program installed as well, either

SAS, Stata or SPSS.

System log files

ASTA creates system log files for the purpose of detecting where something when wrong if ASTA crashes or

do not work as expected.

By default, ASTA writes system logs to the following locations:

 on macOS: ~/Library/Logs/asta/ASTA_systemlog.log

 on Windows: %USERPROFILE%\AppData\Roaming\asta\ ASTA_systemlog.log

%USERPROFILE%: UserProfile environment variable represents the path to the user's profile folder

(C:\Users\{username})

The asta.log file format is build up of the following information: [timestamp] [log type] text [code path]

http://environmentvariables.org/UserProfile

32

 log type: info, warning or error

 code path: Rigsarkiv.[Model].[Class].[Function]

Example as followings:

[2019-07-03 10:24:04.604] [info] selected path: C:\VSO\Rigsarkivet\SPSS\spss23765_short.sav

Rigsarkiv.Hybris.DataExtraction.AddEvents

[2019-07-03 10:24:24.909] [error] ENOENT: no such file or directory, scandir

'C:\VSO\Rigsarkivet\test\FD.12345\Data' Rigsarkiv.Hybris.DataExtraction.EnsureData

Athena C# .Net- batch and log files

Athena C# .Net has 2 packaged applications within the administrator version of electron:

 AthenaConsole.exe: used to batch converting by starting & passing parameters explicitly as

following:

AthenaConsole.exe “SIP json-file path” “AIP output path” “AIP folder name”

 AthenaForm.exe: Invoked from electron as child process with required parameters. Implements by

using .Net 4.5 Windows Forms

Both above applications depending on Athena.dll component see Klassediagram. Both above applications

System logs settings using log4net configuration in (AthenaConsole.exe.config & AthenaForm.exe.config)

files:

<log4net>
 <appender name="RollingFile" type="log4net.Appender.RollingFileAppender">
 <file value="${USERPROFILE}\AppData\Roaming\asta\athena_systemlog.log" />
 <appendToFile value="true" />
 <maximumFileSize value="100KB" />
 <maxSizeRollBackups value="2" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date %level %logger - %message%newline" />
 </layout>
 </appender>
 <root>
 <level value="INFO" />
 <appender-ref ref="RollingFile" />
 </root>
 </log4net>

Log path on Windows: ${USERPROFILE}\AppData\Roaming\asta\athena_systemlog.log

Styx C# .Net - batch and log files

Styx C# .Net has 2 packaged applications within administrator version of electron:

 StyxConsole.exe: used to batch converting by starting & passing parameters explicitly as following:

StyxConsole.exe “AIP path” “DIP output path” “DIP folder name” “script type” (just supporting

1007+)

 StyxForm.exe: Invoked from electron as child process. Implements by using .Net 4.5 Windows

Forms

33

Both above applications depending on Styx.dll component see Klassediagram. Both above applications

System logs settings using log4net configuration in (StyxConsole.exe.config & StyxForm.exe.config) files:

<log4net>
 <appender name="RollingFile" type="log4net.Appender.RollingFileAppender">
 <file value="${USERPROFILE}\AppData\Roaming\asta\styx_systemlog.log" />
 <appendToFile value="true" />
 <maximumFileSize value="100KB" />
 <maxSizeRollBackups value="2" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date %level %logger - %message%newline" />
 </layout>
 </appender>
 <root>
 <level value="INFO" />
 <appender-ref ref="RollingFile" />
 </root>
 </log4net>

Log path on Windows: ${USERPROFILE}\AppData\Roaming\asta\styx_systemlog.log

6. Development Setup

The solution for program 1 (Hybris and Nemesis) is made in Electron, so any IDE that supports this, is

optimal. As the files never compiles, a simple text editor can do as well. Program 2 (Athena and Styx) is

made in .NET and requires Visual Studio to compile.

Once the solution is cloned locally, you need to ensure that the required npm modules for program 1 are

installed (these are listed in package.json), therefore you need to run ‘npm install’ once the initial clone is

done. This will install the packages on the machine.

When this is complete you can run ‘npm start’ which runs program 1 locally.

For program 2 you just run the application from Visual Studio.

Modules used for program 1 (Hybris and Nemesis – Electron)

There have been used various modules (npm) in the solution for program 1, these are listed here;

 Electron (https://www.npmjs.com/package/electron). Core component for the solution.

 Electron-packager (https://www.npmjs.com/package/electron-packager). Handles the packaging

for the various operating systems in the program.

 Electron-installer-dmg (https://www.npmjs.com/package/electron-installer-dmg). Creates a mac

dmg file (this needs to be run on a Mac machine).

 Fortawesome/fontawesome-free

(https://www.npmjs.com/package/@fortawesome/fontawesome-free). Used to make icons in the

log view in the Nemesis part of the program.

 Chardet (https://www.npmjs.com/package/chardet). Checks the format of the data files from the

user (if they are UTF-8 formatted).

 Junk (https://www.npmjs.com/package/junk). Filters files in searches.

https://electronjs.org/
https://www.npmjs.com/package/electron
https://www.npmjs.com/package/electron-packager
https://www.npmjs.com/package/electron-installer-dmg
https://www.npmjs.com/package/@fortawesome/fontawesome-free
https://www.npmjs.com/package/chardet
https://www.npmjs.com/package/junk

34

 Nodejs-base64 (https://www.npmjs.com/package/nodejs-base64). Does base 64 encoding /

decoding.

 XmlDom (https://www.npmjs.com/package/xmldom). Xml file handling.

 electron-log (https://www.npmjs.com/package/electron-log). Creates a log file.

 fast-csv (https://www.npmjs.com/package/fast-csv). Parsing CSV-data files.

 fs-extra (https://www.npmjs.com/package/fs-extra). Adds file system methods that aren't included

in the native fs module and adds promise support to the fs methods.

All modules are listed with a minimum version in the code, but once the code is cloned and installed, the

latest modules will be downloaded as well.

The list of dependencies can be found at:

https://github.com/the-danish-national-archives/ASTA/network/dependencies

Modules used for program 2 (Athena and Styx – C# .Net)

Athena C# .Net has followings modules:

log4net (http://logging.apache.org/log4net/) .NET logging

Useful API references:

 Node.js: is a JavaScript runtime across platforms. It has a set of built-in modules which you can use

without any further installation. (https://www.w3schools.com/nodejs/ref_modules.asp).

o File system: is one of most used modules in ASTA

o Child Process: Invoke .Net WinForms applications

o OS: Platform Information (Windows, Mac or Linux)

 Node.js NPM: is a package manager for Node.js packages, or modules if you like.

 Electron: is an open source library developed by GitHub for building cross-platform desktop

applications with HTML, CSS, and JavaScript. Electron accomplishes this by combining Chromium

and Node.js into a single runtime and apps can be packaged for Mac, Windows, and Linux.

o Main and Renderer Processes (https://electronjs.org/docs/tutorial/application-

architecture#differences-between-main-process-and-renderer-process).

o Demo API (https://github.com/electron/electron-api-demos/blob/master/docs.md).

 Electron Packager: is a command line tool and Node.js library that bundles Electron-based

application source code with a renamed Electron executable and supporting files into folders ready

for distribution.

o --extra-resource (https://gist.github.com/fodra/d6c4572a0c6f0c405e6c2f35a09efb78)

o electron-installer-dmg (https://www.npmjs.com/package/electron-installer-dmg)

o electron-winstaller (https://github.com/electron/windows-installer)

 Visual Studio Code: is a lightweight but powerful source code editor which runs on your desktop

and is available for Windows, macOS and Linux.

 C#: (C-Sharp) is a programming language developed by Microsoft that runs on the .NET Framework.

 .NET Windows Forms: Smart clients are graphically rich applications that are easy to deploy and

update, can work when they are connected to or disconnected from the Internet, and can access

https://www.npmjs.com/package/nodejs-base64
https://www.npmjs.com/package/xmldom
https://www.npmjs.com/package/electron-log
https://www.npmjs.com/package/fast-csv
https://www.npmjs.com/package/fs-extra
https://github.com/the-danish-national-archives/1007plus/network/dependencies
http://logging.apache.org/log4net/
https://nodejs.org/en/
https://www.w3schools.com/nodejs/ref_modules.asp
https://nodejs.org/api/fs.html
https://nodejs.org/api/child_process.html#child_process_child_process
https://nodejs.org/api/os.html
https://electronjs.org/
https://electronjs.org/docs/tutorial/application-architecture#differences-between-main-process-and-renderer-process
https://electronjs.org/docs/tutorial/application-architecture#differences-between-main-process-and-renderer-process
https://github.com/electron/electron-api-demos/blob/master/docs.md
https://github.com/electron/electron-packager/blob/master/docs/api.md
https://gist.github.com/fodra/d6c4572a0c6f0c405e6c2f35a09efb78
https://www.npmjs.com/package/electron-installer-dmg
https://github.com/electron/windows-installer
https://code.visualstudio.com/
https://www.w3schools.com/cs/
https://docs.microsoft.com/en-us/dotnet/framework/winforms/windows-forms-overview

35

resources on the local computer in a more secure manner than traditional Windows-based

applications.

7. Class diagram

For all .js files there have been made code description which describes a files functionality and usage. As

this is not OO-programming a class diagram is redundant.

The following illustrates program 2’s components diagram.

Asta.dll

Athena.dll Styx.dll

Rigsarkiv.AthenaConsole
AthenaConsole.exe

AthenaConsole.exe.config

Rigsarkiv.AthenaForm
AthenaForm.exe

AthenaForm.exe.config

Rigsarkiv.StyxConsole
StyxConsole.exe

StyxConsole.exe.config

Rigsarkiv.StyxForm
StyxForm.exe

StyxForm.exe.config

Asta.dll is responsible for custom logs. By subscribing to LogManager event handler “LogAdded” possible

different output displays for each LogEntity object can be implemented.

<<Enumeration>>

LogLevel

LogManager

LogAdded

Flush()

LogEventArgs

LogEntity

LogEntity

Level
Section
Message

Info
Warning
Error

36

Athena.dll component has 4 inherited converter classes (Structure, MetaData, Data & Index) that’s

implement Run method. Each of these classes is responsible for partially convert action as followings:

 Structure: create AIP folder structure and copy embedded resource XSD files.

 MetaData: build tableIndex & researchIndex XML files with related code lists data tables

 Data: use stream writer to convert CSV to XML data table files.

 Index: Ensure files indices XML file and create report.

Tables Property in Report class updates through above converter’s run methods ends with list of Table

objects. Each object contains related conversion output data like Columns objects. Index Flush method

generates report. Data GetRow function take Table object and row index return specific detailed Row

object with before, after values & errors. The Converter structure takes the followings parameters:

 LogManager: responsible for add & flush custom logs.

 SIP json-file path

 AIP output path

 AIP folder name

Converter

_logManager

Structure

Run()

MetaData

Run()

Data

Run()
GetRow()

Index

Run()

Table

CodeList
Columns
Errors
ErrorsRows
Folder
Name
Options
Rows
SrcFolder

1

Tables

Column

Id
Modified
Name
Nullable
RegExp
Type
TypeOriginal

n

1

Row

SrcValues
DestValues
ErrorsColumns

Report

TablesCounter
1 CodeListsCounter

Tables

Flush()

1
n

1

n

37

Styx.dll component has 3 inherited converter classes (Structure, MetaData & Data) that’s implement Run

method. Each of these classes is responsible for partially convert action as followings:

 Structure: create DIP folder structure and copy embedded script files based on script type.

 MetaData: build related texts files for (VARIABEL, VARIABELBESKRIVELSE, KODELISTE &

BRUGERKODE)

 Data: use stream writer to convert XML data to CSV files.

Tables Property in Report class updates through above converter’s run methods ends with list of Table

objects. Each object contains related conversion output data like Columns objects.

The Converter structure takes the followings parameters:

 LogManager: responsible for add & flush custom logs.

 AIP path

 DIP output path

 DIP folder name

 Script type (SPSS, SAS, Stata)

38

<<Enumeration>>

ScriptType

Converter

_logManager

Structure

Run()

MetaData

Run()

Data

Run()

Table

Columns
Folder
Name
Rows
SrcFolder

1Report

Column

Id
Modified
Name
Description

CodeList

Type
TypeOriginal

n

1

Report

ScriptType

1

Tables

1
n

1

1

SPSS
SAS
Stata

8. Browser and operating system version supported

Browser version support

Log files from ASTA is developed in HTML and was tested and worked on the following versions of the

following browsers (as of September 2019):

 Google Chrome: 77.0.3865.90 (7.7.299) (64 bit)

 Mozilla Firefox: 69.0.2 (64 bit)

 Microsoft Internet Explorer: 11.0.145

 Microsoft Edge: 17.17134

 Safari (tested on Mac): 11.1.2 (13605.3.8) and 12.1.2

NOTE: The Internet Explorer is blocking (as a setting) embedded JavaScript from executing when opening a

file, therefore there is need to click a checkbox and allow blocked content in order to make the log files

work in this browser.

Operating system version support

ASTA was tested and worked on the following versions of the following operating systems:

39

 Windows 7 and 10

 macOS High Sierra

9. Languages

Hybris & Nemesis (program 1) are supporting multiple languages. The default language is Danish. JSON

(https://www.json.org) files are used to save different languages texts. You can use online validation site

(https://jsonlint.com).

File’s name is using LCID standard (https://docs.microsoft.com/en-us/openspecs/office_standards/ms-

oe376/6c085406-a698-4e12-9d4d-c3b0ee3dbc4a). Files are placed at electron/assets/languages and

structured as array of sections. Each section has a name related to HTML page and keys array. Each key

element has key/value pair. All Keys are unique and starting with related section name separating by “-“

with extra text. A new language file required add file to release package (Creation of packages and releases)

Followings are examples using Visual Studio Code.

Remember to keep each key name uniquely a cross language file. See da-DK.json example:

In most cases above a key is representing a HTML element id and value will be placed as element value on

program starting event. This will be done by using reserved “languages” CSS class. See key’s related HTML

element example:

https://www.json.org/
https://jsonlint.com/
https://docs.microsoft.com/en-us/openspecs/office_standards/ms-oe376/6c085406-a698-4e12-9d4d-c3b0ee3dbc4a
https://docs.microsoft.com/en-us/openspecs/office_standards/ms-oe376/6c085406-a698-4e12-9d4d-c3b0ee3dbc4a

40

Key’s value has variant possible contents from simple text to long HTML contents with menu and PDF links.

NOTE: Because a value is string typed remember to use backslash as escape character, see example:

NOTE: Key’s value has also Composite Formatting notation { index } (https://docs.microsoft.com/en-

us/dotnet/standard/base-types/composite-formatting). These will be replace by self application so do not

change them. See:

NOTE: Key’s value has also PDF links references so do not change id attribute since it is used by application.

In order to update link reference to a new language just change self filename then added new file to

electron/assets/documents folder. Of course you need also to add new PDF file to release package

(Creation of packages and releases), see:

https://docs.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting
https://docs.microsoft.com/en-us/dotnet/standard/base-types/composite-formatting

41

10. Profile

Hybris & Nemesis (program 1) is generating for first run JSON profile file:

 on macOS: ~/Library/Logs/asta/profile.json

 on Windows: %USERPROFILE%\AppData\Roaming\asta\ profile.json

File is saving user language id. This can be changed by user at the profile section.

Save action will restart application. See:

NOTE: You need to delete this file manually on ASTA uninstallation.

